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Abstract
We consider the ground state of a system of chargeless fermions, such as
neutrinos, of mass m and magnetic moment µ interacting through long-
range magnetic dipole interaction, within the framework of a Hartree–Fock
variational approach. At high densities the uniform paramagnetic state becomes
unstable towards a ferromagnetic state with quadrupolar deformation of the
Fermi surface. The exchange energy which is attractive dominates the repulsive
kinetic energy. If we let the density be a variable, then above a certain density
the system will collapse to an infinite density state unless another short-range
interaction stops the collapse. In the case of large deformations, the possibility
of a purely dipolar deformation exists.

PACS number: 67.40.Db

1. Introduction

In the context of big-bang cosmology, it has recently been suggested that the universal cosmic
background neutrinos (the relic neutrinos) may be in a ferromagnetic state with domain walls
between different regions [1]. Neutrinos are spin-1/2 fermions with no electric charge but a
finite mass and a finite magnetic moment (Dirac neutrinos). Whether or not such neutrinos
with a tiny magnetic moment could have condensed into a ferromagnetic state, the general
problem of chargeless (neutral) fermions interacting via magnetic dipole interaction is a very
interesting problem in its own right. Fundamental questions of interest are the nature of the
ground state and low lying excitations. For definiteness, in this paper we consider the case
of spin-1/2 Fermi particles of mass m, spin �s and magnetic moment µ

⇀

s , interacting through
magnetic dipole interaction. We study the ground state of this system using the familiar
many-body variational Hartree–Fock approach.

Unlike the case of spin-1/2 charged fermions interacting with spin-independent Coulomb
interaction e2/|�r1 − �r2|, the magnetic dipole interaction between two chargeless particles such
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as neutrinos (1 and 2) has the form of the non-central spin-dependent tensor interaction [2],
v(r)(�s1 · �s2 − 3

⇀

s 1 · �

r
⇀

s 2 · �

r), where �si denotes the particle spin, �r = �r1 − �r2, r = |�r1 − �r2|,
�

r = �r/r , and where v(r) in the present case falls of as µ2/r3 with respect to the inter-particle
distance r. The interaction depends on the direction of �r in an essential way, containing the five
components of the spherical harmonics Y2m(θ, φ) ≡ Y2m(

�

r). In general, at very short average
distances (high density) the interaction term varying as 1/r3 will dominate the system energy.
This is just the opposite of the familiar electron gas case where the Coulomb interaction
varying as 1/r dominates only at low densities [2]. For the latter, for average inter-particle
separation r0, the interaction energy goes as 1/r0 whereas the kinetic energy goes as 1

/
r2

0 .
For the case of the magnetic dipole interaction, if we use the dimensionless density parameter
rsm = r0/rm, where (4π/3)r3

0 = V/N = 1/n and rm = 2mµ2/h̄2 (magnetic radius), the
kinetic energy of the system varies as 1

/
r2

sm, whereas the interaction term varies as 1
/
r3

sm.
It is important to note that in the Fourier transformed space (the q-space), the spin-

dependent dipole interaction is independent of the magnitude of q, but depends on its direction
(

�

q), containing a sum of terms of the form µ2M
(M)
12 Y2,−M(q̂), for �q �= 0. For �q = 0, the Fourier

component of the interaction vanishes identically. There is no longer an isotropic 4πe2/q2

form as in the case of the Coulomb interaction. Here, N
(M)
12 , M = −2 to +2, are two-particle

spin operators which connect states whose z-components of the total spin, SZ = s1z + s2z,
differ by M. Since there is no �q = 0 term in the interaction, the Hartree term (the direct term)
goes to zero in the uniform density case. The Hartree–Fock (HF) exchange contribution with
an overall negative sign comes from only the N

(0)
12 Y20(

�

q) term in the interaction involving no
change in the total SZ . Both parallel spins and anti-parallel spins contribute equally, but with
opposite signs. The exchange contribution will go to zero if the occupation number nσ (�k)

of the particles is independent of the spin index σ (i.e. if n↑(�k) = n↓(�k)) or if nσ (�k) does
not depend on the direction of �k (i.e. if nσ (�k) = nσ (k)). Thus, for a nonzero exchange
contribution, one must have n↑(�k) �= n↓(�k), i.e. a spin-polarized state, and one must have
a deformed Fermi surface, with nσ (�k) = n(0)

σ (k) + δnσ (�k), where the deformation δnσ (�k)

depends on the direction of �k. At high enough density (rsm < 1), we show that such a
ground state |�0〉 becomes more stable than the state |0〉 corresponding to the unpolarized
(paramagnetic) isotropic Fermi surface of the non-interacting gas. In terms of the parameters
for the assumed deformation, we determine the value of rsm at which this transition will take
place. Beyond this density, there is of course no stopping, and the system would collapse,
unless some other inter-particle interaction at very short distances stops the collapse.

The arrangement of the paper is as follows. In section 2, we calculate the HF energy of two
particles interacting via magnetic dipole interaction, and set up the many-body Hamiltonian.
In section 3, the many-body variational HF approximation is used to calculate and analyse the
expression for the total energy E = Ekin + Eexch of the system in the new variational ground
state |�0〉, with arbitrary occupation number nσ (�k). Our conclusions and possible effects of
higher order corrections are discussed in section 4.

2. Two-particle Hartree–Fock energy and the many-body Hamiltonian

The magnetic dipole interaction between two particles of spin �s and magnetic moment µ�s is
given by

V (�r1�s1; �r2�s2) ≡ V (1, 2) = µ2

r3
[�s1 · �s2 − 3�s1 · �

r �s2 · �

r], (2.1)

where

�r = �r1 − �r2, r = |�r1 − �r2|, �

r = �r/r. (2.2)
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This interaction can be decomposed into the form [3]

V (1.2) = µ2

r3

+2∑
M=−2

N
(M)
12 F (−M)(

�

r), M = 0,±1,±2, (2.3)

where the two-particle spin operators N
(M)
12 and the angular part F (−M)(

�

r) are given by

N
(0)
12 = s

(0)
1 s

(0)
2 − 1

4

(
s
(+1)
1 s

(−1)
2 + s

(−1)
1 s

(+1)
2

)
, (2.4a)

N
(±1)
12 = s

(±1)
1 s

(0)
2 + s

(0)
1 s

(±1)
2 , (2.4b)

N
(±2)
12 = s

(±1)
1 s

(±1)
2 , (2.4c)

F (0)(
�

r) = −
√

16π

5
Y20(

�

r), (2.5a)

F (∓1)(
�

r) = ∓
√

6π

5
Y2,∓1(

�

r), (2.5b)

F (∓2)(
�

r) = −
√

16π

5
Y2,∓2(

�

r). (2.5c)

Here, Y2m(
�

r) denotes the spherical harmonics of order 2, and

s
(0)
i = siz, s

(±1)
i = six + isiy, i = 1, 2, (2.6)

are the usual spin-1/2 operators.
A straightforward calculation of the Fourier transform (FT) of the interaction with respect

to �r leads to the expression

V12(�q) =
∫

d�r e−i�q·�rV (�r1s1, �r2s2) = µ2
+2∑

M=−2

h−MN
(M)
12 Y2,−M(

�

q), (2.7)

where h−M are constants given by

h0 = (4π/3)

√
16π

5
, h±1 = ±(4π/3)

√
6π

5
, h±2 = (4π/3)

√
6π

5
. (2.8)

In this problem, V12(�q) is independent of the magnitude of �q, but depends on the direction
through the spherical harmonic Y2,−M(θq, φq). It is however spin dependent through the
operators N

(M)
12 . It can be shown directly that V12(�q = 0) = 0.

Now let us consider the state of two particles with momenta h̄�k1 and h̄�k2 and z-component
of spins σ1 and σ2, respectively, with the corresponding anti-symmetrized wavefunction. In
the non-relativistic case, which we consider here, in such a state the kinetic energy of the two
particles is (h̄2/2m)

(
k2

1 + k2
2

)
, whereas the first-order HF energy is given by

〈V12〉 = 〈
	�k1σ1,�k2σ2

(�r1s1, �r2s2)|V (�r1s1, �r2s2)|	�k1σ1,�k2σ2
(�r1s1, �r2s2)

〉
= µ2

V 2

∫
d�r 1

r3

[
F (0)(

�

r)〈σ1(s1)σ2(s2)|N(0)
12 |σ1(s1)σ2(s2)〉

− e−i(�k1−�k2)·�rF (0)(
�

r)〈σ2(s1)σ1(s2)|N(0)
12 |σ1(s1)σ2(s2)〉

]
. (2.9)

Here, the first term inside the bracket is the direct term and the second term is the exchange
term. Note that in the first-order correction to the energy, only the M = 0 term in the
interaction contributes; it does not change the z-component of the total spin Sz. The direct
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term (�q = �k1 − �k2 = 0) after angular integration goes to zero because F (0)(
�

r) is proportional
to Y20(

�

r). In fact, the exchange term is related to the �q = �k1 − �k2 �= 0 component of the FT
of the part of the interaction with M = 0. Using the result (2.7), it can be explicitly written as

Eexch
12 = −µ2

V

(
4π

3

)(√
16π√

5

)
Y20(

�

q)N̄
(0)
12 (σ1, σ2), (2.10)

where the spin matrix element is given by

N̄
(0)
12 (σ1, σ2) = 〈σ2(s1)σ1(s2)|N(0)

12 |σ1(s1)σ2(s2)〉
= 1

4δσ1,σ2 − 1
4

(
δσ1,−1/2δσ2,1/2 + δσ1,1/2δσ2,−1/2

)
. (2.11)

In equation (2.11), δσ,σ ′ is a Kronecker delta function. A close examination of (2.10) and
(2.11) shows that the exchange contribution lowers the energy (negative overall) when the
spins are parallel and the direction of the momentum transfer �q is such that cos2 θq > 1/3, or
when the spins are antiparallel and cos2 θq < 1/3. The maximum lowering of energy comes
from the parallel spins with wave vectors such that θq = 0 or π , with �k1 �= �k2.

The many-body Hamiltonian for this system of N particles in volume V is given by

H =
∑
�kσ

ε�kσ c+
�kσ

c�kσ +
µ2

2V

∑
�k1σ1σ

′
1

∑
�k2σ2σ

′
2

∑
�q

〈σ ′
1(s1)σ

′
2(s2)|V12(�q)|σ1(s1)σ2(s2)〉

× c+
�k1+�qσ ′

1
c+

�k2−�qσ ′
2
c�k2σ2

c�k1σ1
(2.12)

where c+
�kσ

(c�kσ ) are the usual creation (destruction) operators for the particles, and ε�kσ =
h̄2k2/2m. The FT of the interaction operator, defined in equation (2.7), gives a spin-dependent
interaction depending only on the direction of the momentum transfer but not on its magnitude.
In terms of the inter-particle separation

r0 = (3V/4πN)1/3 = (3/4πn)1/3, (2.13)

we can scale different quantities in equation (2.12) in dimensionless form as

�p = r0 �k, V̄ = V
/
r3

0 , �q = r0 �q, (2.14)

so that the Hamiltonian (2.12) can be rewritten as

H = h̄2

2mr2
0

∑
�pσ

p2c+
�pσ c�pσ +

µ2

2V̄ r3
0

∑
�p1σ1σ

′
1

∑
�p2σ2σ

′
2

∑
�q

〈σ ′
1(s1)σ

′
2(s2)|V12(

�

Q)|σ1(s1)σ2(s2)〉

× c+
�p1+�qσ ′

1
c+

�p2−�qσ ′
2
c�p2σ2c�p1σ1 . (2.15)

Note that in the above expression, the quantities inside the summation signs are dimensionless.
It implies that the interaction term is small compared to the kinetic energy for low densities,
i.e. if rsm ≡ (h̄2r0/2mµ2) > 1, but for high densities when rsm � 1, it dominates the kinetic
energy term. In other words, in terms of the magnetic radius rm = (2mµ2/h̄2), and the ratio
rsm = r0/rm, we can treat the interaction term as a perturbation to the non-interacting state
only if rsm � 1. Since we are not interested here in this limit, we will not use the usual
perturbative approach, but examine the expectation value of the above Hamiltonian in a trial
ground state using the variational approach. We will assume that in the variational ground
state |�0〉 the single-particle occupation function nσ (�k) is not necessarily the spherical Fermi
function f0(k) of the non-interacting system, and treat it as a variational parameter. We also
assume that there is no mass density wave; this drops the direct term.
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3. The exchange energy and the ground state of the system

As indicated before, we are not interested here in the low-density perturbation approach in
which V12 can be considered small compared to the kinetic energy, and where one can start
with the non-interacting paramagnetic ground state |0〉. This is in contrast to the electron
gas problem where in the high density limit the kinetic energy dominates the interaction
energy which can therefore be treated perturbatively (after properly taking care of the q = 0
singularity of the Coulomb interaction). For the dipolar quantum fluid case we assume that the
variational single-determinant ground state |�0〉 is described by a more general single-particle
distribution function, similar to the expansion used in the Landau Fermi liquid theory [4],

nσ (�k) = n(0)
σ (k) + �nσ (�k) = n(0)

σ (k) +
∑
l �=0

l∑
m=−l

�nlm
σ (k)Ylm(

�

k), (3.1)

in which n(0)
σ (k) is the spherical part of the distribution function and �nσ (�k) is the angular part.

This division is motivated by the fact that the interaction is non–central; the non-spherical
part is a measure of the deformation of the spherical Fermi surface of the non-interacting
system. Also note that the spherical part n(0)

σ (k) need not coincide with the non-interacting
Fermi distribution function f0(k), which at T = 0 K equals the theta-function, i.e. it is equal
to 1 for k below the common Fermi wave vector (in the paramagnetic state):

kF0 ≡ (3π2n)1/3 (3.2)

and vanishes for k above. The expectation value of the Hamiltonian in the state (3.1) is

〈�0|H |�0〉 ≡ E = Ekin + Eexch, (3.3)

where the kinetic energy contribution is given by

Ekin =
∑
�kσ

(h̄2k2/2m)nσ (�k), (3.4)

and the exchange energy is given by

Eexch = − µ2

2V
h0

∑
�k �q

∑
σ1σ2

nσ1(
�k + �q)nσ2(

�k)Y20(
�

q)N̄
(0)

12 (σ1, σ2), (3.5)

where the constant h0 = (4π/3) (
√

16π/5) and the spin matrix elements N̄
(0)
12 (σ1, σ2) are

given by equation (2.11).
If we substitute the form (3.1) of the distribution function in the above expressions for

Ekin and Eexch, we observe that∑
�k

�nσ (�k) = 0, (3.6)

and ∑
�k

∑
�q

n(0)
σ1

(|�k + �q|)n(0)
σ2

(k)Y20(
�

q) = 0, (3.7)

because �nσ (�k) does not contain any l = 0 component and the integration over �k in
equation (3.7) gives a function which depends only on the magnitude of �q. We thus find

Ekin =
∑
�kσ

(
h̄2k2

2m

)
n(0)

σ (k) (3.8)
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and

Eexch = − µ2

2V
h0Iexch, (3.9)

where

Iexch =
∑
�k,�q

∑
σ1,σ2

N̄
(0)
12 (σ1, σ2)Y20(

�

q)

× ⌊
n(0)

σ1
(|�k + �q|)�nσ2(

�k) + n(0)
σ2

(|�k + �q|)�nσ1(
�k) + �nσ1(

�k + �q)�nσ2(
�k)

⌋
. (3.10)

The first two terms of equation (3.10), linear in the deformation, contribute only if the
deformation �nσ (�k) has l = 2, 4, 6, . . . components, because the decomposition [5] of the

spherical function n(0)
σ (|�k + �q|) contains an infinite sum of products of Ylm(

�

k)Y ∗
lm(

�

q):

n(0)
σ (|�k + �q|) =

∞∑
l=0

ñ
(0)
σ l (k, q)Pl(cos θkq)

=
∞∑
l=0

ñ
(0)
σ l (k, q)

(
4π

2l + 1

) ∑
m

Ylm(
�

q)Y ∗
lm(

�

k), (3.11)

where

ñ
(0)
σ l = (2l + 1)/2

∫ +1

−1
d(cos θkq)Pl(cos θkq)n

(0)
σ (|�k + �q|). (3.12)

Here, Pl(cos θ) is the Legendre function. For the l = 1 deformation, one has to go to
the last term in equation (3.10), which is of the second order in deformation, to obtain any
nonvanishing contribution.

In principle, to minimize the total energy one has to vary all possible parameters in the
assumed n(0)

σ (k) and �nσ (�k). However, let us suppose that for small deformations we can
deal with only the linear terms in equation (3.10), and assume further that we have only l = 2
deformation, the lowest l possible in this case:

�nσ (�k) = �n(20)
σ (k)Y20(

�

k). (3.13)

Because of symmetry, the terms with Y2m(
�

k), m �= 0, do not contribute to linear terms. This
simplification leads to

Iexch ≈
∑
�k �q

∑
σ1σ2

N̄
(0)
12 (σ1, σ2)Y20(

�

q)n(0)
σ1

(|�k + �q|)�n(20)
σ2

(k)Y20(
�

k) + (σ1 ↔ σ2). (3.14)

This expression can also be rewritten in the form (�k12 = �k1 − �k2)

Iexch =
∑
�k1 �k2

∑
σ1σ2

N̄
(0)
12 (σ1, σ2)n

(0)
σ1

(k1)�n(20)
σ2

(k2)Y20(
�

k2)Y20(
�

k12) + (σ1 ↔ σ2). (3.15)

One may use either of the above forms to proceed further. If one uses the form (3.14), one needs

to expand n(0)
σ (|�k+ �q|) in spherical harmonics Ylm(

�

k)Y ∗
lm(

�

q) as done already in equations (3.11)

and (3.12), whereas in the form (3.15) one has to express Y20(
�

k12) as products of spherical

harmonics Ylm(
�

k1)Y
∗
l′m′(k̂2). In the latter case, l and l′ are not necessarily the same in the sum

of the products. Since both the expressions must give the same result, we use the form (3.14)
and expand n(0)

σ (|�k + �q|) as in equations (3.11) and (3.12). After some algebra, including
angular integrations and spin summations, we finally obtain

Iexch = 1

(4π)2

∑
�k,�q

1

2

[{
ñ

(0)
↑2 (k, q) − ñ

(0)
↓2 (k, q)

}{
�n

(20)
↑ (k) − �n

(20)
↓ (k)

}]
. (3.16)
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Now, we must choose proper forms for n(0)
σ (k) and �n(20)

σ (k), with the constraint that the total

occupation number n(0)
σ (k) + �n(20)

σ (k)Y20(
�

k) is non-negative and does not exceed 1 for any
�k. We know that in the absence of kinetic energy, the exchange energy itself is minimum if
all the spins are parallel and different particles move with different momenta in the positive
z-direction or the negative z-direction. In view of this let us assume that there is no occupation
of down-spin states. In this case

ñ
(0)
↓2 (k, q) = 0, �n

(20)
↓ (k) = 0 (3.17)

and we have all spins up (fully polarized state). Thus, the exchange energy becomes

Iexch = 1

(4π)2

∑
�k,�q

1

2
ñ

(0)
↑2 (k, q)�n

(20)
↑ (k). (3.18)

For definiteness, let us try the following simple ansatz for n
(0)
↑ (k) and �n

(20)
↑ (k):

n
(0)
↑ (k) = (1 − |β|)f0(k); �n

(20)
↑ (k) = β

2

√
16π

5
f0(k), (3.19a)

so that

n↑(�k) = (1 − |β|)f0(k) +
β

2
(3 cos2 θk − 1) (3.19b)

with − 1
2 < β < 2

3 . Here f0(k) is the Fermi distribution function. This range of values for β,
which can be taken to be either negative or positive, ensures that the total n↓(k) is non-negative
and not larger than 1 for any value of θk . Since we have neglected the second-order terms in
deformation, we will of course like β to be small. The substitution of (3.19) into (3.18) then
leads to

Iexch = β(1 − |β|)1

4

√
16π

5

(
1

4π

)2 ∑
�k �q

f02(k, q)f0(q) (3.20)

where

f02(k · q) = 5

2

∫ +1

−1
dz f0

(√
(k2 + q2 + 2kqz)P2(z);

P2(z) = 1

2
(3z2 − 1).

(3.21)

Note that at T = 0 K, the magnitudes of �k and |�k + �q| have to be less than the new Fermi wave
vector:

kF↑ = kF0

(
2

(1 − |β|)
)1/3

; kF0 =
(

3π2N

V

)1/3

. (3.22)

If we scale q and k in the dimensionless forms, x = q/2kF↑; y = k/kF↑, the summations
over �k and �q in equation (3.20) can be simplified (for T = 0 K) to the form

(1/(4π)2)
∑

�k

∑
q

f02(k, q)f0(k) =
(

5

2π

)
N2J/(1 − |β|)2, (3.23)

where

J = 9

4π

∫ 1

0
x2 dx

∫ 1

0
y2 dy f02(x, y) (3.24)
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and

f02(x, y) = 5

2

∫ +1

−1
dz f0

(√
(x2 + y2 + 2xyz)

)
P2(z). (3.25)

Now, in our simplified case, equations (3.9), (3.20) and (3.23) directly give

Eex/N = −µ2

r3
0

Jβ

(1 − |β|) . (3.26)

The dimensionless constant J given by the integral (3.24) is expected to be positive. A
numerical calculation of the integral in fact gives its value to be 0.011 56. However, in reality
it does not matter whether it is positive or negative. One can always choose the sign of β such
that βJ is positive. Thus, we can replace βJ in the above equation by |β||J |. If J is positive,
as in our case, β has to be positive. The assumed form (3.19b) for the occupation function
leads to the expression for kinetic energy per particle as

Ekin/N = 3

5

h̄2k2
F0

2m

(
2

1 − |β|
)2/3

= 2.21

r2
0

(
h̄2

2m

) (
2

1 − |β|
)2/3

, (3.27)

where (3/5)
(
h̄2k2

F0

/
2m

) = (
2.21

/
r2

0

)
(h̄2/2m) ≡ E0/N is the kinetic energy per particle

for the non-interacting gas in the paramagnetic state. The kinetic energy has increased now
because of the larger up-spin Fermi sphere which has to accommodate all the N particles.

The total energy per particle becomes

E/N = 2.21

r2
0

(
h̄2

2m

) [(
2

(1 − |β|
)2/3

− 1

r∗
sm

( |β|
(1 − |β|)

)]
, (3.28)

with the dimensionless density parameter

1

r∗
sm

= rm

r0

|J |
2.21

≡ r∗
m

r0
= 2mµ2

h̄2

( |J |
2.21

)
1

r0
≈ 1

rsm
(1/191). (3.29)

In our case, since we found J to be positive, we must have β also positive, with 0 < β < 2/3,
so that the occupation number is non-negative and does not exceed 1. Note that for our dipolar
Hamiltonian, E0/N is also the variational ground state energy per particle if the trial ground
state is taken to be the non-interacting paramagnetic state |0〉:

〈0|H |0〉/N = (
2.21

/
r2

0

)
(h̄2/2m) ≡ E0/N. (3.30)

The energy (3.28) becomes less than the energy per particle, E0/N, of the non-interacting
paramagnetic ground state, for r0 such that

r0 < r∗
m

β

(1 − β)

1

[{2/(1 − β)}2/3 − 1]
, (3.31)

where r∗
m = rmJ/(2.21) ≈ rm/191. In figure 1, we have plotted the ratio of the ground state

energies E/E0 for different values of the deformation parameter β in the allowed range of
0 to 2/3, as a function of r∗

sm = r0/r∗
m. For a particle with mass m and magnetic moment

of an electron, rm ∼= 10−13 cm, relation (3.31) implies that the transition will take place for
r0 < 10−13 cm and density greater than 10+39 cm3. For a particle with heavier mass but the
same magnetic moment, the requirement is less severe, whereas for particles such as neutrinos
with smaller mass (by a factor in the range of 10−6−10−9 or so [6]) and much smaller magnetic
moment (by a factor of 10−10 or more [7]), the requirement on density for this transition is
extremely severe.

If one increases the density beyond the above transition, eventually the total energy
becomes negative (see figure 1) for
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Figure 1. Comparison of the ground state energy E of the variational polarized ferromagnetic
state having a deformed Fermi surface with the ground state energy E0 of the non-interacting
paramagnetic state. The ratio is plotted as a function of density parameter r∗

sm = r0/r∗
m ≈

(3/4πn)1/3/[(2mµ2/h̄2)×191] for different values of the deformation parameter β in the allowed
range of 0 to 2/3.

r0,critical = r∗
m

β

(1 − β)

(
1 − β

2

)2/3

; 0 < β < 2/3, (3.32)

and the system will collapse to the infinite density state unless some other particle–particle
interaction at very short distances can arrest this collapse.

4. Discussion of results

By choosing a very simple form for the single-particle occupation function nσ (�k) for the new
variational ground state |�0〉, we have shown that for a system of neutral fermions such as
neutrinos interacting via magnetic dipole interaction, the total energy can indeed be lowered,
compared to the case of the non-interacting ground state |0〉, due to the negative exchange
energy contribution, when the density is sufficiently high so that the inter-particle distance
r0 < rm = 2mµ2/h̄2. As the density is increased further, for r0 < r0,critical, the system will
collapse to an infinite density state. In this exercise, we have used a simple variational form for
the distribution function given by equations (3.17) and (3.19b), in which we have assumed a
complete (δ = 1) spin-polarized ferromagnetic state. It is possible to get a lowering of energy
even if we assume that in addition to spin-up occupation and deformation in its occupation
function, there is spin-down occupation

(
n

(0)
↓ (�k) �= 0

)
, with no deformation (�n↓(�k) = 0). In

that case, there may be a range of polarization parameter δ < 1, defined by n↑ − n↓ = nδ, for
which the system has a lower energy with a minimum as a function of δ for sufficiently high
density. We plan to consider this problem in a later investigation.

Also, in this paper we have restricted our variational occupation function to the
l = 2 deformations, and have neglected the term in the exchange energy which is of the
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second-order deformation. If we include the second-order term, it will be possible to consider
the l = 1 deformations and see whether this can give a nonvanishing contribution and lead
to a lower energy than that calculated here. This will also be taken up in a later publication.
The main motivation of our study in this paper was to show that the dipolar exchange energy
in a quantum Fermi liquid (QFL) can indeed lower the energy in a spin-polarized state with
a deformed Fermi sphere, and above a critical density the system will collapse to an infinite
density sate. We have not found any earlier calculation of the exchange energy in this case
which could throw light on the nature of the ground state of chargeless fermions with only
magnetic dipole interaction. In [1], the existence of a fairly large attractive exchange energy is
assumed in a phenomenological model equivalent to the phenomenological Stoner-like model
for ferromagnetic transition involving itinerant electrons in metals. However, one cannot use
directly such a model here, because the form and the nature of the exchange interaction arising
from the magnetic dipole interaction are completely different than that coming from the usual
Coulomb interaction. In completely different contexts, there are earlier discussions of the
effect of additional dipolar interaction [8, 9] for particles on a lattice or in classical fluids
while considering magnetic or other phase transitions in condensed matter. In those studies,
other molecular interactions are always present in the system, in addition to the magnetic
dipole (or the electric dipole or the elastic dipole) interaction. The problem considered by us
is completely different than those, because here we have the full three-dimensional positive
kinetic energy contribution of the QFL, as the quantum dipoles are allowed to move, and there
is no other interaction present in the system except for the magnetic dipole interaction between
the particles.

One important question which we must discuss at this point is whether higher order
terms in the interaction, similar to the Goldstone diagrams [2] of the perturbation theory,
would change the validity of our main results. This is particularly relevant because in our
case the interaction is independent of the magnitude of the momentum transfer, depending
only on its direction, and we are dealing with the high density region. In this connection,
we must, however, note that we are not using the straightforward perturbation theory on the
non-interacting ground state |0〉. We have used a variational ground state |�0〉 to calculate its
energy E = 〈�0|H |�0〉. The variational principle ensures that the true ground state energy
must always be lower than the energy E calculated here. In other words, the existence of
a deformed magnetic state with lower energy compared to the uniform paramagnetic state
and infinite density collapse above a critical density will survive in an exact calculation. The
critical density itself would be lower than that obtained here. We propose to investigate this
further in a later work.

As we have presented our results in section 3, for neutrinos with a much smaller mass and
a very tiny magnetic moment compared to electrons, the critical density for the transition will
be exceedingly high. In cosmological context, very close to the big-bang one has very high
densities, but one also has very high temperatures. Our results of the zero-temperature ground
state calculation cannot be applied directly to such a situation. We must extend our work not
only to finite temperatures but also to relativistic single-particle energies. Here, we will prefer
not to speculate about the impact of our work on neutrino cosmology, and wait for the results
of such a calculation to be taken up in future.
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